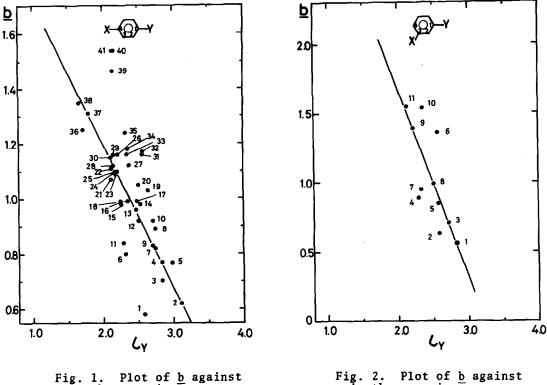
EFFECTS OF FIXED SUBSTITUENTS UPON SUBSTITUENT CHEMICAL SHIFTS OF THE C-1 ATOM IN m- AND p-DISUBSTITUTED BENZENES. CORRELATION WITH INDUCTIVE SUBSTITUENT PARAMETER (1)

Naoki Inamoto,^{*} Shozo Masuda, Kazuo Tori⁺ and Yohko Yoshimura⁺ Department of Chemistry and Research Centre for Spectrochemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan, and ⁺Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

Bromilow, Brownlee, Topsom and Taft¹ reported that the effect of a fixed substituent (Y) on the substituent ¹³C-chemical shifts of the C_1 atom directly bonded to the Y group (C_1 -SCS) in p-substituted benzenes ($p-X-C_6H_4-Y$) is controlled by the σ -charge density at the C_1 -atom on the basis of their dual substituent parameter approach. Recently, Lynch² concluded that the slope parameter (<u>b</u> in equation: $\delta = a_0 + \underline{b}\delta_0$) depends on the ionization potential of the key atom in the Y group, examining a wider variety of systems by the single parameter approach using the shift-shift relationship of C_1 -SCS (δ) with the corresponding C_p -SCS (δ_0) in monosubstituted benzenes (XC₆H₅).


corresponding C_p -SCS (δ_0) in monosubstituted benzenes (XC_6H_5). We³ have also treated C_1 -SCS in disubstituted benzenes with the same method as that reported by Lynch.² This communication describes our finding that the slope parameters (<u>b</u>) in the m- and p-series are linearly correlated with the inductive substituent parameter⁴(<u>1</u>:Iota) of the group Y.

Our new observed data on C_1 -SCS as well as those selected from the literature⁵⁻¹² were treated with the shift-shift relationship using the data on monosubstituted benzenes recommended by Lynch.² The results are summarized in the TABLE.

The slope parameters (b) obtained here and reported by Lynch² were plotted against parameter 1 and linear relationships were obtained in the p- and mseries as shown in Figs. 1 and 2, respectively. Deviations for the Cl, Br, I, CN, C=CH and CF₃ groups in the p-series are attributed to the spin-orbit coupling for the heavy halogen atoms,¹³ the magnetic anisotropies for the C=CH and CN groups,¹⁴ and the unsuitable 1 value for the CF₃ group probably owing to an overestimation of the electronegativity (the correct 1 value can be estimated TABLE. Shift-shift relationships of C_1 -SCS in m- and p-XC₆H₄Y to the corresponding ¹³C-SCS in XC₆H₅

to the corresponding C-SCS in $xc_6^{n_5}$													
	p-Series Fixed substi- tuent, Y	n ^a	ao	<u>b</u>	r ^b :	ref.		p-Series Fixed substi- tuent, Y	n ^a	ao	<u>b</u>	r ^b r	ef.
1	NMe ₂	5	150.7	0.58	0.979	с	29	SMe	7	139.7	1.16	0.951	с
2	-	10	163.0	0.62	0.993	2	30	CH ₂ F	7	136.6 ^d	1.15	0.995	8
3	OMe	10	160.2	0.71	0.995	2	31	CN	10	113.0	1.16	0.992	2
4	OMe	12	160.0	0.77	0.992	с	32	CN	10	111.8	1.17	0.993	9
5	OCH=CH ₂	8	156.4	0.77	0.996	2	33	SOMe	7	146.8	1.16	0.996	7
6	СНО	10	135.9	0.80	0.991	с	34	СООН	7	131.6	1.18	0.980	5b
7	NO ₂	10	147.8	0.82	0.989	2	35	Br	10	122.6	1.24	0.998	2
8	NO ₂	9	147.6	0.89	0.981	с	36	SiMe ₃	7	140.0	1.25	0.997	2
9	NH ₂	10	147.0	0.83	0.993	2	37	GeMe ₃	6	142.2	1.31	0.9998	2
10	NH ₂	7	147.3	0.92	0.986	с	38	SnMe ₃	7	142.0	1.35	0.997	2
11	COMe	10	136.8	0.84	0.991	с	39	I	8	94.3	1.47	0.997	2
12	CH=CH ₂	11	137.4	0.92	0.998	2	40	SCH=CH ₂	9	134.8	1.54	0.998	2
	$C(Me) = CH_2$	8	141.0	0.96	0.999	2	41	SeCH=CH ₂	9	129.8	1.54	0.999	2
14	Ph	8	141.6	0.98	0.998	2				<u></u>			
15	COPh	′ 9	137.4	0.98	0.994	6		m-Series Fixed	а			r ^b r	c
16	CONH ₂	7	134.3	0.99	0.992	2		substi- tuent, Y	n ^a	^a o	<u>b</u>	r ^D ref.	
17	C(^t Bu)=CH	29	143.1	0.99	0.999	2							
	SO ₂ Me	7	141.2	0.99	0.988	7	1	OMe	10	159.9	0.53	0.707	с
	C≡CH	11	122.4	1.03	0.998	2	2	NMe ₂	5	150.8	0.63	0.693	с
20	CF3	9	131.1	1.05	0.997	2	3	NO ₂	7	148.4	0.71	0.760	с
21	CMe ₃	8	151.0	1.07	0.996	2	4	COMe	7	137.5	0.89	0.955	с
22	CMez	19	151.7	1.11	0.993	10	5	CN	11	112.8 ^d	0.85	0.636	12
	Et	9	141.6	1.09	0.999	2	6	CN	5	112.6	1.36	0.768	с
24	Et	5	144.8	1.10	0.998	с	7	СНО	8	136.7	0.95	0.910	с
25	Ме	10	138.1	1.10	0.998	2	8	CH=CH ₂	5	136.4 ^e	0.99	0.920	11
26	Me	16	138.7	1.16	0.996	9	9	Me	14	138.0	1.39	0.904	9
27	C1	10	134.8	1.12	0.999	2	10	COOH	6	131.5	1.54	0.906	5b
28	SMe	7	138.8	1.12	0.988	7	11	CMe ₃	13	151.4	1.55	0.915	10
								-					

^a No. of substituents used. ^b Correlation coefficients. ^c This work. ¹H Noise-decoupled ¹³C FT NMR spectra were recorded on a Varian NV-14 FT NMR spectrometer at 15.087 MHz using 8-mm spinning tubes at 30°. Sample concentrations were 1 mmol/cm³ in CDCl₃ with TMS(δ 0) as an internal reference. Accuracies of chemical shifts δ are ±0.07(ppm). The full data will be reported elsewhere. ^d Data converted using δ_{C} (CHCl₃)=77.2 ppm. ^e Data converted using δ_{C} (CS₂)=192.8 ppm.

1 in the p-series.

1 in the m-series.

to be <u>ca</u>. 2.5, by judging from many plots of 13 C-SCS in various systems against <u>1</u>).

In the m-series, the shift-shift relationships were found to have not enough high r values (see the TABLE) because of the small 13 C-SCS. Therefore, plot of b against ι is scattered more than those in the p-series.

The features of the plots shown in Figs. 1 and 2 are quite similar to that of the C_{α} -SCS in substituted alkanes against <u>1</u> reported previously.⁴ This fact indicates that the slope parameters are controlled by the σ -electron density at the C_1 atom as suggested by Bromilow <u>et al</u>.¹

Moreover, Lynch's result² implies that both electron density and excitation energy terms in the paramagnetic shielding expression in ¹³C chemical shift formalism¹⁵ are reflected in parameter <u>1</u>; the latter energy term is considered to depend on ionization potential.

In conclusion, we have succeeded in unifying the two different interpretations by Bromilow <u>et al.</u>¹ and Lynch,² employing the <u>1</u> parameter. Thus, the <u>1</u> parameter should be very useful for interpreting $1{}^{3}C$ -SCS.^{4,16} The applications of the inductive substituent parameter <u>1</u> to other linear freeenergy relationships are in progress.¹⁷

REFERENCES

- J. Bromilow, R. T. C. Brownlee, R. D. Topsom and R. W. Taft, <u>J. Am. Chem.</u> <u>Soc.</u> <u>98</u>, 2020 (1976).
- 2. B. M. Lynch, Can. J. Chem. 55, 541 (1977).
- 3. N. Inamoto, S. Masuda, Y. Takayama, K. Tokumaru, K. Tori and M. Yoshida, presented partly in the 34th Annual Meeting of the Chemical Society of Japan, Hiratsuka, Abstracts II, p. 549 (1976).
- N. Inamoto and S. Masuda, <u>Tetrahedron Lett.</u> 3287 (1977). The <u>1</u> values for the other substituents are as follows: CH₂F(2.12), SeCH=CH₂(2.15), SCH=CH₂ (2.16), CONH₂(2.25), SOMe(2.33), SO₂Me(2.35), C(Me)=CH₂(2.47), C(^tBu)=CH₂ (2.48) and OCH=CH₂(2.98).
- a) J. Niwa and M. Yamazaki, <u>Chem. Lett.</u> 765 (1974); b) C. Nagata, H. Nagata and S. Tanaka, <u>Nippon Kagaku Kaishi</u> 2045 (1975).
- 6. M. J. Shapiro, <u>Tetrahedron</u> 33, 1091 (1977).
- 7. G. W. Buchanan, C. Reyes-Zamora and D. E. Clarke, <u>Can. J. Chem.</u> <u>52</u>, 3895 (1974).
- J. Bromilow, R. T. C. Brownlee and A. V. Page, <u>Tetrahedron Lett.</u> 3055 (1976).
- 9. N. Inamoto, S. Masuda, K. Tokumaru, K. Tori, M. Yoshida and Y. Yoshimura, ibid. 3707 (1976).
- 10. S. Berger, <u>Tetrahedron</u> <u>32</u>, 2451 (1976).
- 11. K. S. Dhami and J. B. Stothers, Can. J. Chem. 43, 510 (1965).
- 12. J. Bromilow and R. T. C. Brownlee, Tetrahedron Lett. 2113 (1975).
- 13. I. Morishima, K. Endo and T. Yonezawa, <u>J. Chem. Phys.</u> <u>59</u>, 3356 (1973).
- 14. I. Morishima, A. Mizuno and T. Yonezawa, Chem. Phys. Lett. 7, 633 (1970).
- 15. M. Karplus and J. A. Pople, J. Chem. Phys. 38, 2803 (1963).
- 16. N. Inamoto and S. Masuda, Chem. Lett. 177 (1978).
- N. Inamoto and S. Masuda, presented preliminarily in the 37th Annual Meeting of the Chemical Society of Japan, Yokohama, Abstracts II, P. 636 (1978).

(Received in Japan 12 August 1978)